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We consider an ensemble of self-dual matrices with arbitrary complex entries.

This ensemble is closely related to a previously defined ensemble of anti-sym-

metric matrices with arbitrary complex entries. We study the two-level correla-

tion functions numerically. Although no evidence of non-monotonicity is found

in the real space correlation function, a definite shoulder is found. On the

analytical side, we discuss the relationship between this ensemble and the b=4
two-dimensional one-component plasma, and also argue that this ensemble,

combined with other ensembles, exhausts the possible universality classes in non-

hermitian random matrix theory. This argument is based on combining the

method of hermitization of Feinberg and Zee with Zirnbauer’s classification of

ensembles in terms of symmetric spaces.
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1. INTRODUCTION AND CLASSIFICATION

There are ten known universality classes of hermitian random matrices.

Dyson (1) proposed the existence of three symmetry classes, depending on

spin and the existence of time reversal symmetry. These give the three

classes known as Gaussian Unitary, Orthogonal, and Symplectic (GUE,

GOE, GSE). Another three ensembles are the chiral Gaussian ensembles

(chGUE, chGOE, chGSE). (2) These ensembles are of relevance to low



energy QCD. Altland and Zirnbauer introduced four more ensembles

which can appear in superconducting systems. (3) Finally, Zirnbauer demon-

strated a relationship between the different classes of random matrix theory

and symmetric spaces, and from this argued that the ten distinct known

universality classes exhausted all possible universality classes, (4) subject to

the qualification that some disordered systems have a transfer matrix group

that is not semi-simple, and cannot be represented by a single element in

this classification. (5)

In this section we discuss various universality classes of non-Hermitian

random matrices, including the ensemble of arbitrary self-dual matrices,

the subject of this paper. We mention the concept of weak non-Hermiticity,

but do not consider it further in this paper. We argue that the various

classes of non-Hermitian matrices, the self-dual ensemble and four others,

exhaust all possible universality classes. Finally, possible applications of the

self-dual ensemble are dealt with, including relations with the one-compo-

nent plasma. In Section II, we further discuss the relationship with the one-

component plasma. In Section III, numerical results for the self-dual

ensemble are discussed, in particular the eigenvalue density as a function of

radius and the two-eigenvalue correlation functions.

Several ensembles of non-Hermitian random matrices are common in

the literature. Ginibre (6) introduced three classes of such matrices. One is an

ensemble of matrices with arbitrary complex elements, one an ensemble

with arbitrary real elements, and the third an ensemble with arbitrary real

quaternion elements. Another ensemble of non-Hermitian matrices is an

ensemble of complex, symmetric matrices. (7) This ensemble arises partic-

ularly in problems of open quantum systems. This gives a total of four

known universality classes. For each of these ensembles, there exists a

weakly non-Hermitian version of that ensemble. This idea of weak non-

Hermiticity was introduced by Fyodorov et al. (9) In this case the anti-

Hermitian part of the matrix is small; we only consider strongly non-Her-

mitian matrices in the present paper and do not consider weakly non-

Hermitian matrices, even though they are the most relevant for scattering

problems.

The strongly non-Hermitian ensembles can be obtained from a general

three parameter family of non-Hermitian matrices introduced by Fyodorov

et al. (8) This family includes parameters measuring the strength of the real
and imaginary, symmetric and anti-symmetric parts of the matrix. By

adjusting the parameters, one can obtain various ensembles. One possiblity,

which does not appear to have been considered much, is an ensemble of

anti-symmetric matrices with arbitrary complex elements.

Now, let us show that this ensemble is equivalent to an ensemble of

self-dual matrices with arbitrary complex elements; this is the ensemble
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considered in this paper. Let A be an arbitrary anti-symmetric matrix. Let

Z be the matrix given by

R
0 1
−1 0

0 1
−1 0

...
S (1)

Then, ZT=−Z and Z2=−1. Let M=ZA. It is trival to verify that

ZMTZ=−M. So, M is self-dual. The advantage of using self-dual matri-

ces instead of anti-symmetric matrices is that self-dual matrices have pairs

of equal eigenvalues while anti-symmetric matrices have pairs of opposite

eigenvalues; this makes the correlation functions clearer. When choosing

matrices from the ensemble, we will use Gaussian weight

e−1/2 Tr(M†M) (2)

Given these five classes, the 3 ensembles of Ginibre as well as the

ensembles of symmetric non-Hermitian and self-dual non-Hermitian, let us

ask whether all possible universality classes of strongly non-Hermitian

random matrices have been found. Feinberg and Zee introduced the

method of hermitization for non-Hermitian matrices. (10) A similar tech-

nique was used by Efetov. (11) The basic idea is to take a non-Hermitian

matrixM−E, where E is a complex number, and form the Hermitian matrix

H=1
Mh−ER Ma−iEI

M†
a+iEI −Mh+ER2

(3)

where Mh is the Hermitian component of M and Ma is the anti-Hermitian

component ofM and ER and EI are the real and imaginary components of
E. Equivalently, one can form the Hermitian matrix

H=1
0 M−E

M†−Ē 0 2
(4)

From the zero eigenvalues of H, one may extract the zero eigenvalues of
M−E. So, to each universality class of non-Hermitian random matrices,

there corresponds a universality class of Hermitian random matrices.

If we hermitize the three non-Hermitian ensembles introduced by

Ginibre, we obtain the three chiral ensembles (chGUE, chGOE, chGSE).
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The relation with the chiral ensembles is most clear using Eq. (4), instead of

Eq. (3). If we hermitize the ensemble of symmetric, complex matrices we

obtain the ensemble with symmetry class CI, according to the nomencla-

ture of Altland and Zirnbauer. If we hermitize the ensemble of self-dual

complex matrices, we obtain the ensemble with symmetry class DIII. Here

the relation with the Hermitian ensembles is most clear using Eq. (3). The

other five classes of hermitian random matrices cannot be obtained by

hermitizing a non-Hermitian ensemble: the GOE, GUE, and GSE classes

lack the needed block structure, while the C and D ensembles lack the

symmetry that relates the elements in the upper left and lower right blocks.

This suggests that all possible universality classes of non-Hermitian matri-

ces have been obtained.

One interest in the ensemble of self-dual complex matrices is experi-

mental. Consider a quantum system with Hamiltonian H. If we couple this
system to the outside with some number of channels, one obtains an effec-

tive non-Hermitian Hamiltonian, reflecting the decay of particles out of the

system. For systems with preserved time-reversal invariance, and no spin

orbit coupling, (7) then complex, symmetric matrices are appropriate to

describe the statistics of resonances in the complex energy plane. In the

physical case, the imaginary part of the effective non-Hermitian Hamilto-

nian is always positive definite. However, for the case of an open system

coupled to a large number of channels, a reasonable starting point for the

eigenvalue statistics is the Gaussian ensemble of symmetric, complex

matrices with a constant imaginary part added. If instead the open

quantum system describes a particle with spin, then H will be self-dual, and

for the open quantum system with a large number of channels, the

ensemble considered in this paper will be more appropriate. Specifically, we

have in mind an electron in a quantum dot, with spin orbit scattering, and

strong coupling through external leads to reservoirs.

Another interest is theoretical, considering the relationship of this

ensemble to the b=4 one-component plasma in two-dimensions. Although
the level distribution in the ensemble differs from the distribution of

charges in the plasma, there are some close relations between the two, dis-

cussed more in the next section.

It is known that the ensemble of matrices with arbitrary complex ele-

ments is equivalent to the b=2 plasma. The correlation function of the

b=2 system is monotonic, with Gaussian decay. From perturbative

calculations, (12) it has been suggested that, for b> 2, the two-level correla-
tion function becomes non-monotonic, indicating the appearance of short-

range order. This makes it very interesting to examine the correlation

function of the ensemble of self-dual matrices, although no significant sign

of any non-monotonicity is found here in the numerical calculations.
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Numerical calculations on the one-component plasma (13) suggest that

there is a phase transition at b % 144; so, any order that exists for b=4
must be short range. An exact study for finite number of particles (14)

showed non-monotonicity of the correlation functions for b=4, 6. Even for
b=4 there is a definite peak in the correlation function.

II. b=4 ONE-COMPONENT PLASMA

Consider a system of N particles, located at positions zi, with partition
function

F dzi dz̄i D
N

i=1
e−|zi|

2
D
i < j

eb log(|zi−zj|) (5)

This defines the two-dimensional one-component plasma. For b=4, there
exists some relation between this system and the ensemble considered here.

First, the density of the plasma, r, is equal to 1
2p, where the density is

measured in charges per unit area. The plasma has constant charge density

r in a disc about the origin, and vanishing charge density outside. The

eigenvalue density in the self-dual ensemble is the same as the charge

density in the one-component plasma, as found numerically in the next

section, and as can be shown with a replica or SUSY technique (the

method of hermitization provides a way of performing SUSY calculations

on non-Hermitian sysytems (11)).

Second, there exists a relationship between the joint probability

distribution of the eigenvalues of M and the probability distribution of

charges in the one-component plasma. The j.p.d. of the eigenvalues ofM is
different from the charge distribution in the plasma, but we will argue that
for widely separated eigenvalues the j.p.d. of the eigenvalues behaves the

same as the probability distribution of the charges. This then provides the

explanation for the equivalence of the eigenvalue and charge densities.

Let M be a matrix within the ensemble of self-dual, complex matrices.

We can write M as M=X LX−1, where L is a diagonal matrix of eigen-

values of M. The eigenvalues of L exist in pairs, with [L, Z]=0. The
requirement that M be self-dual is equivalent to the requirement that

XTZ=ZX−1 and Z(X−1)T=XZ; if this constraint on X holds it is easy to

verify that ZMTZ=−M.

If we were to impose the additional constraint on X that X be unitary,

then we would find that X must be an element on the symplectic group. In

this case, with X in the symplectic group, the matrix M must be normal,

such that [M, M†]=0. In this case the distribution of eigenvalues of M
exactly matches the charge distribution in the b=4 plasma.
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In the general case, M is not normal and X is not unitary, and the

distribution of eigenvalues of M will be different from the charge distribu-

tion of the plasma. Still, consider a situation in which we fix L and

integrate over X, with Gaussian weight e−1/2 Tr(M†M). This is how one

obtains the j.p.d. of the eigenvalues.

The measure [dM] on matrices M is equivalent to the measure

[dli][dX]<i < j |li−lj |8. The j.p.d. of the eigenvalues is defined by

D
i < j

|li−lj |8 F [dX] e−1/2 Tr(M†M) (6)

with M=X LX−1. The Gaussian weight, e−1/2 Tr(M†M), will depend on X. It
will be greatest when X is chosen to be symplectic, so that M is normal. If

the eigenvalues of L are well separated, then the exponential in the Gaus-

sian weight will be large, and we can evaluate the integral by a saddle point

method, as discussed in more detail in an Appendix: we will restrict our

attention to a saddle point manifold of matrices M which are normal, as

well as weak fluctuations .away from this saddle point manifold. If we

parametrize the fluctuations away from the saddle point manifold and then

treat these fluctuations in a Gaussian approximation, valid when the

eigenvalue separation is large, we obtain that the j.p.d. for the self-dual

ensemble is equal to, in this particular approximation,

D
N

i=1
e−|zi|

2
D
i < j

(|zi−zj |)4 D
N

i=1
dzi dz̄i (7)

up to a constant factors. This is, of course, the same as the probability

distribution of the charges in the one-component plasma at b=4.
In general, we expect that for well separated eigenvalues, the level

repulsion in the self-dual ensemble will match the charge repulsion in the

plasma; it is only the short distance interaction that will be different.

Further, it may be shown explicitly by calculations on small matrices that

the short distance interactions in the j.p.d. for the self-dual ensemble

cannot be written as a product of two-body terms.

We have not been able to find a simple, exact expression for the j.p.d.

of the eigenvalues. By calculations on 4-by-4 matricesM, we can show that

the two-eigenvalue interaction is different from that in the one-component

plasma. By proceeding to 6-by-6 matrices, we can see that there are also

three-eigenvalue interactions. It appears that in general there are k-
eigenvalue interactions. The mathematical reason for the difficulty lies in

the integral over X, above. This integral is not Gaussian, and we have no
easy way of performing it. The ability to perform the analogous integral for

the ensemble of complex matrices was essential to Ginibre’s computation

of the j.p.d. in that case. (6)
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Given these similarities, one might hope that the correlation functions

of the self-dual ensemble will shed some light on correlations within the

plasma. In the next section, we discuss a numerical investigation of the self-

dual ensemble.

III. NUMERICS

Mathematica was used to generate 4940 600-by-600 self-dual matrices.

The matrices were chosen with Gaussian weight e−1/2 Tr(M†M) as in Eq. (2).

The matrices have 300 pairs of eigenvalues. A picture of these eigenvalues

for a typical matrix is shown in Fig. 1.

The eigenvalue density as a function of radius is shown in Fig. 2. The

density obeys the circular law: (6, 16) it is nonvanishing and roughly constant

within a disc, and vanishing outside. For the b=4 one component plasma,
with a confining potential e−z̄z (see Eq. (5), the expected density of particles
per unit area, from the circular law, is 1

2p . The single particle eigenvalue

density observed numerically for the self-dual matrices agrees with this

result; note that since eigenvalues come in pairs, then we expect e−z̄z to be
the confining potential that corresponds to the weight of Eq. (2) as each

eigenvalue in the pair contributes a factor of e z̄z/2.

Fig. 1. Plot of eigenvalues for a typical 600-by-600 matrix.
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Fig. 2. Average eigenvalue density as a function of radius.

One interesting feature of Fig. 2 is that the eigenvalue density near the

edge rises before dropping. This is probably a result of the short-distance

behavior of the two-eigenvalue interaction. From calculations on 4-by-4

matrices, we can see that the repulsion between eigenvalues is weaker than

|zi−zj |4 for small separations. Compared to the one-component plasma

case, this reduces the repulsion that the charges on the edge feel due to the

charges closer to z=0, and enables the charges on the edge to move to

smaller radii, creating a peak in the density.

Near z=0, there is a clear modulation in the eigenvalue density. From
numerical calculations on finite-size Hermitian random matrices, (15) it is

common to see modulations in the average density, as a result of level

repulsion. These modulations can be seen at all energies, but disappear as

the size of the matrix tends to infinity. For the non-Hermitian case it is not

surprising that we also see modulations in the density; the reason they are

strongest near z=0 is that the total number of eigenvalues at a given |z|
increases linearly with |z|, and so away from z=0 the modulations become
smeared.

The two-level correlation function is shown in Figs. 3 and 4. In Fig. 3,

we look at all eigenvalues within a distance of 6 or less from the origin, and

plot the probability to find another eigenvalue at given distance from the

first eigenvalue. In Fig. 4, to reduce effects due to the finite size of the

matrixM, we require that the first eigenvalue lie within a distance of 3.5 or

less from the origin. No significant differences are found between Fig. 3

and Fig. 4, indicating that the effects due to the finite size of M are small

even in Fig. 3.
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Fig. 3. Average two level correlation function. See text.

One can see finite size effects in both Figs. 3 and 4 for large distances.

The correlation function rises for distances of around 20. This is simply due

to the rise in eigenvalue density near the edge, as shown in Fig. 2, and has

no deep meaning.

Looking at Figs. 3 and 4, there is a definite ‘‘shoulder’’ at a distance of

slightly less than 3. There is no definite sign of any non-monotonicity; cer-

tainly, if there is any peak in the correlation function near the shoulder, it

is much smaller than the peak found in the b=4 plasma. (14) As a quick
estimate of the expected spacing between levels, assume that the levels

formed a perfect hexagonal lattice, so that they are very ordered, and

Fig. 4. Average two level correlation function. See text.

Eigenvalue Distribution in the Self-Dual Non-Hermitian Ensemble 911



packed as closely as possible. In this case, if the levels have a density of 12p ,

then the closest spacing between levels is 2`p/31/4, which is approximately
2.7. For other arrangements of levels, the spacing will be slightly less. This

length agrees quite well with the size of the shoulder. So, the shoulder

length matches reasonably with the length scale expected from the particle

spacing.

In principle, it is possible to compute the two-eigenvalue correlation

function using SUSY techniques. However, it is very difficult, since the

combination of non-Hermitian matrices and the requirement of self-duality

leads to a complicated saddle-point manifold for the Q-matrices.

IV. CONCLUSION

In conclusion, we have considered an ensemble of strongly non-

Hermitian, self-dual matrices. The two-level correlation function of this

ensemble is particularly interesting, although the hoped for non-mono-

tonicity has not emerged. It seems that all possible universality classes of

non-Hermitian matrices are now known.

V. APPENDIX

We wish to derive Eq. (7) as an approximation to Eq. (6). Equation (6)

may be derived following standard techniques for other ensembles. (15) The

group of matrices X is a complex entension of the symplectic group, and

the measure [dX] is chosen invariant under multiplication by X in the

group. As usual,M does not uniquely specify X. If X is right multiplied by

any matrix Y such that [Y, L]=0, M is unchanged; generically there is an

N parameter family of such matrices Y. These are matrices of the form
Y=eP such that the only elements of P are immediately above and below

the main diagonal:

P=R
0 p1
p1 0

0 p2
p2 0

...
S (8)

Thus, we must choose a parametrization of X which avoids this problem.

We choose to parametrize X=eHS, where H are Hermitian anti-self-dual
matrices (ZHTZ=H) and where the elements of H immediately above and
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below the main diagonal vanish. S is a symplectic matrix. Equation (6)

becomes, up to constant factors,

D
i < j

|li−lj |8 F [dH] J[H] e−1/2 Tr(L†e2HLe−2H) (9)

where J is a Jacobian associated with this parametrization. Note that the
integration over S drops out.

Expand eH in powers of H to find

D
i < j

|li−lj |8 F [dH] J[H] e−1/2 Tr(4[H, L][H, L]†+O(H4)) (10)

The integrand is maximized for H=0. For H=0, the Jacobian is equal to
unity and, ignoring the higher order terms in H, we obtain Eq. (7) after
evaluating the Gaussian integral. Including the higher order terms in the

exponential and including terms from the dependence of the Jacobian on H
gives corrections to Eq. (7). Each correction at given order is a function of

the positions of a certain number of eigenvalues li, and is suppressed by

factors of 1/|li−lj |2.
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